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Abstract: - Respiratory failure is a typical clinical issue which needs immediate help with mechanical 

ventilation while the hidden reason is recognized and treated. Mechanical ventilation can damage the lungs if 

the applied pressure is too high. It is desirable to provide the desired blood levels of CO2 and oxygen with 

limited pressure to avoid causing the lung injury. This paper uses the adaptive inverse dynamics control 

technique to control a two-compartment modelled respiratory system. Based on the nonlinear respiratory model 

and desired respiratory pressures, the adaptive inverse dynamics control scheme consisting of a control law and 

an adaptation law is then applied. The control law has the structure of the two-compartment inverse dynamical 

model but uses estimates of the dynamics parameters in the computation of pressure applied to the lungs. The 

adaptation law uses the tracking error to compute the parameter estimates for the control law, stops updating a 

given parameter when it reaches its known bounds, and resumes updating as soon as the corresponding 

derivative changes sign. Computer simulations to evaluate the control technique were conducted. Our results 

indicate that the tracking errors can be improved if the parameter values associated with the adaptation law are 

properly chosen, and the performance is also robust despite relatively large deviations in the initial estimates of 

the system parameters.  
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1 Introduction 

Respiration is the trading of oxygen and carbon 

dioxide (CO2) between the environment and the 

body cells. In human body, this procedure 

incorporates spark and termination, dispersion of 

oxygen from alveoli to the blood and of CO2 from 

the blood to the alveoli, and the vehicle of oxygen to 

and CO2 from the body cells by method for the 

circulatory framework. Respiratory failure, that is, 

the lacking trade of CO2 and oxygen by the lungs, is 

a typical clinical issue which needs immediate help 

with mechanical ventilation while the hidden reason 

is recognized and treated. For example, a patient 

with pneumonia may require mechanical ventilation 

while the pneumonia is being dealt with anti-toxins, 

which will in the end adequately cure the disease. 

Since the lungs are vulnerable against 

discriminating disease and respiratory failure is 

regular, backing of patients with mechanical 

ventilation is important in the intensive care unit. 

The objective of mechanical ventilation is to 

provide an adequate exchange of oxygen and CO2 in 

order for the lungs to function normally. However, 

without proper control, mechanical ventilation can 

damage the lungs if the applied ventilation pressure 

is too high. Therefore, it is desirable to provide the 

desired blood levels of CO2 and oxygen with limited 

pressure to avoid causing the lung injury, either by 

inflating the lungs to excessive volumes or by 

applying excessive pressures to inflate the lungs. 

 

     A single compartment respiratory lung model, 

characterized by its compliance (i.e., 

volume/pressure) and the resistance to air flow into 

the compartment [1-3], is the most commonly used 

model. In this paper, we use a two-compartment 

model [4-6] to mirror the way that there are two 

lungs although a more complicated multi-

compartment respiratory model has also been 

considered by some other researchers [7-10]. The 

mechanical ventilation via various control 

techniques such as model predictive control, 

classical calculus of variations minimization 

technique, adaptive sliding model control, etc. can 

be found in the literature (e.g., [8], [10]). The 

inverse dynamics (or computed torque) control is a 
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well known technique for the robot motion control 

([11-14]). However, to the best knowledge of the 

authors, the adaptive inverse dynamics control 

technique applying to a lung-rib-cage system has 

not been reported, even though its effectiveness in 

the biped locomotion control has been reported [15, 

16]. Therefore, it is interesting and worthwhile to 

investigate whether the adaptive inverse dynamics 

based methods can still be effectively used to a 

nonlinear respiratory system despite various other 

approaches that have been reported in the literature. 

 

 

2 A Two-Compartment Respiratory 

System Model  
In this section, a two-compartment model is briefly 

described. The motion of one complete breathing 

cycle can be divided into two phases: inspiration 

and expiration. Starting from a parent airway, we 

assume that each airway unit branches into two 

airway units of the subsequent generation (i.e., a 

dichotomy architecture is considered). At time t = 0, 

a driving pressure pin(t) is applied to the opening of 

the parent airway by the respiratory muscles or a 

mechanical ventilator over the time interval 0 ≤ t ≤ 

Tin, with Tin the inspiration duration time. At t = Tin, 

the applied airway pressure is released and 

expiration takes place passively during the interval 

Tin ≤ t ≤ Tin+Tex, where Tex is the duration of 

expiration. Let xi (i = 1, 2) be the lung volume in the 

ith compartment, ( )in

i ic x , i = 1, 2 ( ( )ex

i ic x ) be the 

compliance of the compartment i at inspiration 

(respectively, expiration) which is a nonlinear of xi, 

,

in

j iR , j = 0, 1 (
,

ex

j iR , j = 0, 1) be the resistance to air 

flow of the ith airway in the jth generation during the 

inspiration (respectively, expiration) phase with 

0,1

inR (
0,1

exR ) the inspiration of the 0th generation (parent) 

airway, then the equations for a two compartmental 

lung model can be expressed as follows: 

Inspiration Phase:   

           
0R ( ) ( ) ( ),0 ; (0)in in in

in inx t C x t p t t T x x         

Expiration Phase: 

           
0R ( ) ( ) ( ), ; ( )ex ex ex

ex in in ex inx t C x t p t T t T T x T x       

where 1, 2[ ]Tx x x (the superscript T means the 

transpose), and the diagonal compliance matrix Cin 

(Cex) is  

1 1

2 2

1 1
0 0

,
1 1

0 0

in ex

in ex

in ex

C C
C C

C C

   
   
    
   
   
   

 

and 

0,1 1,1 0,1 0,1 1,1 0,1

0,1 0,1 1,2 0,1 0,1 1,2

,

in in in ex ex ex

in ex

in in in ex ex ex

R R R R R R
R R

R R R R R R

    
           

 

     In order for the system to achieve ideal 

performance, a set of volume and airflow pattern 

(i.e., trajectories) corresponding to the inspiration 

and expiration for both the phases will be used as 

our reference trajectories. 

 

    

3 Adaptive Inverse Dynamics Control  
Since linearized system equations cannot always be 

trusted to accurately predict the responses of real 

(nonlinear) systems, we directly consider nonlinear 

control and briefly review the adaptive control 

scheme [11-14] to be used in our respiratory system.  

 

     Consider a nonlinear dynamical robotic system 

described as 

              ( ) ( , ) ( )D q q C q q q g q                         (1) 

where q  is the n×1 vector of robot joint coordinates, 

τ is the n×1 vector of applied joint torques (or 

forces). ( )D q  is the n×n symmetric positive definite 

inertia matrix, ( , )C q q q  is the n×1 vector of 

centrifugal and Coriolis torques, and  ( )g q  is the 

n×1 vector of gravitational torques. It is well known 

that by the property of linearity in the parameters 

[12-14] the dynamical equation can be written as 

             ( ) ( , ) ( ) ( , , )D q q C q q q g q Y q q q p            (2) 

where ( , , )Y q q q  is an n×m matrix of known 

functions, known as the regressor, and 

1, 2,[ , ]T

mp p p p  is an m-dimensional vector of 

parameters.  

     Inspecting (1) we see that if the (nonlinear) 

control τ is chosen as 

                    ( ) ( , ) ( )D q a C q q q g q                    (3) 

then, by substituting (3) into (1) and using the 

property of ( )D q  we obtain 
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                                           q a                                    (4) 

The vector term a can be defined in terms of a given 

linear compensator K as 

                               da q Ke                                       (5) 

with the tracking error 
de q q  , where ( )dq t  is 

an n-dimensional vector of desired joint trajectories. 

Substituting (5) into (4) leads to the linear error 

equation in the s-domain as 

                            2[ ( )] ( ) 0ns I K s e s                          (6) 

where In is an n×n identity matrix. Letting 

( ) v pK s K s K  leads to the familiar second-order 

error equation (in the time-domain) 

                                0v pe K e K e                           (7) 

If the gain matrices Kv and Kp are chosen as 

diagonal matrices with positive diagonal elements 

then the closed-loop system is linear, decoupled, 

and exponentially stable. 

   The above approach is based on exact 

cancellation of all nonlinearities in the system. 

However, in any physical system there is a degree of 

uncertainty regarding the values of various 

parameters. There will always be inexact 

cancellation of the nonlinearities in the system due 

to this uncertainty and also due to computational 

round-off, etc. In addition, the burden of computing 

the complete model may be prohibitively expensive 

or impossible within the bounds imposed by the 

available computer architecture. In such cases, it is 

desirable to simplify the equations of motion as 

much as possible by ignoring certain of the terms in 

the equations in order to speed the computation of 

the control law. Therefore, it is much more 

reasonable to suppose that, instead of (3), the 

nonlinear control law is actually of the form  

                      ˆˆ ˆ( ) ( , ) ( )D q a C q q q g q     

                      d

v pa q K e K e                           (8) 

where D̂ , Ĉ , and ĝ  are the estimates of D, C, and 

g, respectively. Assume that D̂ , Ĉ , and ĝ have the 

same functional form as D, C, and g with estimated 

parameters 

1, 2,
ˆ ˆ ˆ...., mp p p , then 

              ˆˆ ˆ ˆ( ) ( , ) ( ) ( , , )D q q C q q q g q Y q q q p        (9) 

where 
1, 2,

ˆ ˆ ˆ ˆ[ ...., ]T

mp p p p  is the vector of the 

estimated parameters. 

     Substituting (8) into (1) gives 

          ˆˆ ˆ( )d

v pDq Cq g D q K e K e Cq g           (10) 

Adding and subtracting D̂q  on the left-hand side of 

(10) and using (9), we obtain 

   ˆ ( ) ( , , )v pD e K e K e Dq Cq g Y q q q p         (11) 

where ( ) : ( ) ( )ˆ     . Finally, the error dynamics 

may be written as 

           
1ˆ

v pe K e K e D Yp p                          (12) 

The system (12) can be expressed in state space as 

                        x Ax B p                                     (13) 

where 

0 0
, ,

n

p v n

I e
A B x

K K I e

     
            

                   (14) 

Based on (13) and (14), we choose the update law 

                              
1 T Tp B Px                           (15) 

where 0T     and P is the unique symmetric 

positive definite solution to the Lyapunov equation 

                            TA P PA Q                                 (16) 

for a given symmetric, positive definite Q. Since the 

parameter vector p is constant, ˆp p . Assume that 

q  is measurable and 1D̂  is bounded, then the 

solution x of (13) satisfies 0x   as t   with 

all signals remaining bounded (for proof, see [12]).  

     There are several different versions of the above 

technique. For example, the boundedness of the 

estimated inertia 1D̂  is removed in [13], while in 

[17] the requirement on measurement of q  is 
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removed but still needs the boundedness of 1D̂ . 

Several recent papers have been devoted to the 

implementation of the above adaptive inverse 

dynamics method without measuring q . For 

example, estimate q  from q  via a first-order filter. 

In practice, this approach should be expected to 

work well. 

     

 

4 Results  
Based on the desired volume pressures and the two-

compartment model equation, the adaptive inversed 

dynamics control scheme is used to control the 

pressure parameters.  

 

     The values of the inspiratory and expiratory lung 

resistance constants and compliances for the two-

compartment lung model were taken from [9] and 

they are: 0,1

inR = 9 cm H2O/l/s, 1,1

inR = 1,2

inR  = 16 cm 

H2O/l/s, 0,1

exR = 18 cm H2O/l/s, 1,1

exR = 1,2

exR = 32 cm 

H2O/l/s. The expiratory resistance is assumed two 

times higher than the inspiratory resistance. The 

lung compliance is chosen to be 0.1 l/cm H2O. The 

inspiration duration time Tin = 2 s and the expiration 

time Tex = 3 s. The desired air pressures were taken 

from [8-9]. During the adaptive inverse dynamics 

control process, the total number of parameters to be 

estimated is six. And the estimates of the three 

resistances and two compliances over time during 

one breathing cycle are shown in Fig.1. Figure 2 

shows the desired lung compartment 1 volume 

changes with time for over the 12 seconds period, 

while its input pressure is given in Fig. 3. This is 

also the same when applied to the 2nd compartment. 

The input pressure in compartment 1 is shown in 

Fig. 3. Finally, Fig. 4 shows the tracking errors; for 

instance, e2 is the difference between the desired and 

actual pressures entering the 2nd compartment. 

Overall, the tracking errors are reasonable small.  

 

 
 

 
 

 
 

 

 

Fig. 1. Parameter estimates during one breathing cycle. 
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Fig. 2 Desired volume trajectory over the specified 

time period. 

 

Fig. 3 Input pressure in compartment 1 over the 

specified time period. 

 

(a) 

 

5 Conclusion 
We have applied the adaptive inverse dynamics 

control method to a two-compartment respiratory 

system. The implementation of the control scheme 

consists of a control law and an adaptation law. The 

control law has the structure of the two-

compartment inverse dynamics servo but uses 

estimates of the dynamics parameters in the 

computation of pressure applied to the lungs. The 

adaptation law uses the tracking error to compute 

the parameter estimates for the control law, stops 

 

(b) 

Fig. 4  Tracking errors. 

updating a given parameter when it reaches its 

known bounds, and resumes updating as soon as the 

corresponding derivative changes sign. The 

advantage of using the inverse dynamics control 

method is that it formulates a globally convergent 

adaptive controller which does not require 

approximations such as local linearization, time-

invariant, or decoupled dynamics to guarantee the 

tracking convergence. Simulations show that the 

tracking errors are acceptably small. The future 

work includes the robustness study of the control 

method to the multi-compartment model.   
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